Hello,
I was interested in building a high end printer, mostly for the fun of it and learning what goes into it. I’ve been looking at the Voron and on the page looks really nice; however, I’ve been unable to find a lot of actual print quality, speed, and capability comparisons.
Does anybody here have experience or recommendations of other high end, self build, printer designs?
I’d be using my customized printer based on the ender 3 max platform.
Really, looking to improve in a few areas:
- proper enclosure and venting so I don’t continue to poison myself when printing abs.
- elimination of ringing caused by that heavy bed swinging around at high speed
- ability to ramp up the print speed past 50mm/s
I’d also love the ability to play with multi-matrtial printing, but not high on the list.
Thanks all
TL;DR: Don’t buy multi-material as a beginner.
Long answer: Regarding Multimaterial: It’s not what you expect.
Tried multiple systems in the past and they all had one common issue: Software.
With bambulabs AMS popularity things might change but it’s janky at best. Mosaic pushed a head but in the process had to built their own slicer and as such breaking compatibility to other “experimental” parts/modifications.
The crone could be toolchanger with one mixing hotend tool: Removing the burden of mixing hot ends while keeping the benefit. Neither do common slicer make good use of mixing hotends. Neither do CAD packages allow you to take advantage of mixing hot ends. They are historically built for subtractive manufacturing with additive features being added within the last 10 years. They still aren’t made for dynamically mixing multi-materials (one might call these software-defined materials) and given how bugged Autodesk Inventor already is this probably can’t be added at all. Building a new CAD package from the ground up is cost prohibitive. Meaning all the nice demos people show of are either specialized purpose-built software for exactly this product/shape or a clusterfuck.
.
Let’s talk fiction/future: E3D toolchanger and Prusa XL can do 5 tools. Let’s say 0,25 mm nozzle, 0.8mm nozzle, mixing hotend, DIN 562 (square nut) pick & place and milling spindle. As backend a filament bus-matrix (similar to what the AHB is for MCUs) with two pallet mosaic units within the path (and bypassed for e.g. flexible material) so any filament can be “routed” to any tool. This combined with a good toolchain could be a game changer. The one more thing.
Truth is this is years if not decades into the future. Assuming it will turn into reality which would be a miracle. Slicer being able to automatically optimize for multiple nozzle diameters would be a first step. From there it should be simpler (2.5D CAM could be a roadblock). Once such a machine and toolchain exists adding a 4th and 5th axis would be the next step but that adds even more complexity to it.
Worst case would be yet another round of patents blocking innovation/development of this technology for decades to come. Just like the initial Stratasys FDM patent had to expire before 3D-printing took off.
Thanks! I hadn’t considered the slicers. I don’t have a driving need multi-matrtial – mostly considering that if I’m going to invest in building a printer, I’d want it to be capable in all ways.