• 1 Post
  • 50 Comments
Joined 1 year ago
cake
Cake day: June 11th, 2023

help-circle

  • As an anarchist who would welcome other anarchists - sadly, I doubt if that’s a reliable recipe to stop climate change.

    Limiting (hopefully stopping) climate change can be done under almost any political system… except perhaps dictatorial petro-states. However, it takes years of work to tranform the economy. Transport, heating, food production - many things must change. Perhaps the simplest individual choices are:

    • going vegetarian (vegan if one knows enough to do the trick)
    • avoidance of using fossil fueled personal vehicles
    • improving home energy efficiency (especially in terms of heating)
    • avoidance of air travel
    • avoidance of heavy goods delivered from distant lands

    The rest - creating infrastructure to produce energy cleanly and store sufficient quantities - are typically societal choices.

    As for corals - I would start by preserving their biodiversity, sampling the genes of all coral and coral-related species and growing many of them in human-made habitats. If we’re about to cause their extinction, it’s our obligation to provide them life support until the environment has been fixed.

    Also, I would consider genetically engineering corals to tolerate higher temperatures. Since I understand that this is their critical weakness, providing a solution could save ecosystems. If a solution is feasible, that is.

    Corals reproduce sexually so a useful gene obtained from who knows where would spread among them (but slowly - because typical colonies grow bigger asexually). Also, I would keep in mind that this could have side effects.

    As for tempeature - it will be rising for some time before things can be stopped. Short of geoengineering, nothing to be done but reduce emissions, adapt, and help others adapt. The predictable outcome - it will get worse for a long while before it starts getting any better.






  • Summary:

    But then, in the geologically abrupt space of only a few decades, this great river of ice all but halted. In the two centuries since, it has moved less than 35 feet a year. According to the leading theory, the layer of water underneath it thinned, perhaps by draining into the underside of another glacier. Having lost its lubrication, the glacier slowed down and sank toward the bedrock below.

    /…/

    “The beauty of this idea is that you can start small,” Tulaczyk told me. “You can pick a puny glacier somewhere that doesn’t matter to global sea level.” This summer, Martin Truffer, a glaciologist at the University of Alaska at Fairbanks, will travel to the Juneau Icefield in Alaska to look for a small slab of ice that could be used in a pilot test. If it stops moving, Tulaczyk told me he wants to try to secure permission from Greenland’s Inuit political leaders to drain a larger glacier; he has his eye on one at the country’s northeastern edge, which discharges five gigatons of ice into the Arctic Ocean every year. Only if that worked would he move on to pilots in Antarctica.

    It’s not wild at all. :) The plan makes sense from a physical perspective, but should not be implemented lightly because:

    • it’s extremely hard work and extremely expensive to drain water from beneath an extremely large glacier
    • it doesn’t stop warming, it just puts a brake on ice loss / sea level rise

  • Interestingly, warfare also has the effect of:

    • causing houses to be abandoned, necessitating houses elsewhere while the abandoned ones likely get bombed

    • decreasing the number of future consumers, whose future footprint would depend on future behaviour patterns (hard to predict)

    • changing future land use patterns, either due to unexploded ordnance or straight out chemical contamination (there are places in France that are still off limits to economic activity, because World War I contaminated the soil with toxic chemicals), here in Estonia there are still forests from which you don’t want trees in your sawmill because they contain shrapnel and bullets from World War II

    I have the feeling that calculating the climate impact of actual war is a difficult job.

    But they could calculate the tonnage of spent fuel and energy, that would be easier.







  • perestroika@slrpnk.netOPtoDIY@slrpnk.net*Permanently Deleted*
    link
    fedilink
    arrow-up
    6
    ·
    edit-2
    5 months ago

    It sure is possible.

    A typical “obscenely bright” LED chip might be Cree XML, but many similar chips exist. You’d need a plano-convex or equivalent Fresnel lens - shorter focal lengths favour compact design. Then you need a driver. Some are fixed while some adjustable with a tiny potentiometer. You’d need an 18650 cell holder (it can be made too, an 18650 will go into a leftover piece of 20 mm electrical cabling pipe with a spring-loaded metal cap engineered of something).

    Myself, I bought a nice head lamp, but it broke after one year. The driver board failed. Being of the lazy variety, I replaced the board with a resistor to limit current and now it’s been working 3 years already. Not at peak luminosity, the resistor wasn’t optimal of course. :)


  • I noticed a journalist mention (hopefully based on good sources) that this months’s storm was estimated to be 4-5 times weaker than the 1859 storm.

    NASA, in their article mentions the recent storm as a G5 level geomagnetic storm caused by an X8.7 level solar flare.

    X is the strongest class of solar flares and G is the strongest class of geomagnetic storms, but this was definitely not a record - an X20 flare has been observed once, but as I understand, the ejected particles didn’t hit Earth.

    Where I live (latitude 59), a short electrical grid event occurred during the display of auroras. Something tripped and something immediately switched over to replace it, most people didn’t notice anything, but some had to restart various heat pumps and similar devices. Then again, in Europe, the power grid has relatively short lines and many transformers between them, which makes it comparatively less vulnerable.


  • Regarding transformers: it’s easier to let a power grid trip offline (and transformers are designed to behave so instead of being overpowered) rather than to keep operating despite a Carrington level solar storm and suffer failure on all longer east-west connections.

    Also, I don’t think they used capacitors to protect their high voltage lines back in 1921, because the article Overvoltage Protection of Series Capacitor Banks notes:

    “Their first application dates back to 1928 when GE installed such a bank – rated 1.2 MVar – at the Ballston Spa Substation on the 33 kV grid of New York Power and Light. Since then, series capacitor banks have been installed on systems across the globe.”

    Also, failure on north-south connections isn’t nearly as likely, so a considerable part of the transformer “population” would be spared from impact.

    Thus, while a single strong solar storm within the limit charted out in 1859 would be an extreme inconvenience and strong economic setback, it seems unlikely to end civilization.

    A long period of severe solar storms could also result in ozone depletion in the atmosphere and become another extreme inconvenience - through increased UV exposure. However, most forms of life have seen such things in their evolutionary past, and humans have the ability to wear glasses, clothes and apply sun screen.



  • I’ve been hearing about ZFS and its beneficial features for years now, but mainstream Linux installers don’t seem to support it, and I can’t be bothered to switch filesystems after installing.

    Out of curiosity - can anyone tell, what might be blocking them?

    Edit: answering my own question: legal issues. Licenses “potentially aren’t compatible”.

    Due to potential legal incompatibilities between the CDDL and GPL, despite both being OSI-approved free software licenses which comply with DFSG, ZFS development is not supported by the Linux kernel. ZoL is a project funded by the Lawrence Livermore National Laboratory to develop a native Linux kernel module for its massive storage requirements and super computers.

    Source: https://wiki.debian.org/ZFS



  • From a person who builds robots, three notes:

    1. Camera

    Raspberry Pi has two CSI (camera serial interface) connectors on board, which is a considerable advantage over having to deal with USB webcams. This matters if your industrial robot must see the work area faster, your competition robot must run circles around opposing robots, or more sadly - if your drone must fly to war. :( On Raspberry Pi, in laboratory conditions (extreme lighting intensity), you can use the camera (with big ifs and buts) at 500+ frames per second, not fast enough to photograph a bullet, but fast enough to see a mouse trap gradually closing. That’s impossible over USB and unheard of to most USB camera makers.

    1. Optimized libraries

    I know that Raspberry Pi has “WiringPi” (a fast C library for low level comms, helping abstract away difficult problems like hardware timing, DMA and interrupts) and Orange Pi recently got “WiringOP” (I haven’t tried it, don’t know if it works well). I don’t know of anything similar on a PC platform, so I believe that on NUC, you’d have to roll your own (a massive pain) or be limited to kilohertz GPIO frequencies instead of megahertz (because you’d be wading through some fairly deep Linux API calls).

    1. Antenna socket

    Sadly, neither of them has a WiFi antenna socket. But the built-in WiFi cards are generally crappy too, so if you needed a considerable working area, you’d connect an external card with an external antenna anyway. Notably, some models of Orange Pi have an external antenna, and the Raspberry Pi Compute Module has one too.